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ABSTRACT

An algorithm is developed for estimating the state of a linear dy-

namic system excited by a random sequence. The input data are noisy

observations which are nonlinear functions of the state. The estimates

are best in the sense of least squared residuals. A significant problem

in radar tracking is investigated and the effectiveness of the algorithm

verified.
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1. Introduction.

The problem to be considered is that of state estimation where the

observations are nonlinear functions of the state of the system corrupted

by additive white noies. The equations of motion of the state are lin-

ear in the state and the excitation which includes random components. A

significant constraint on the solution is that the conceptual solution

to this problem must lead to an explicit procedure which can be realized

on a digital computer and the scheme must produce estimates as the obser-

vations are received.

The theory for the case where system dynamics and observation func-

tions are linear is very highly developed. However, when nonlinear it ies

are introduced there are virtually no completely satisfactory solutions.

Two methods for handling the nonlinear problem have been introduced.

The first entails a linearization about a nominal trajectory in state

space. Its success depends upon the accuracy of the nominal trajectory.

This technique has little hope of success in a situation where there is

almost no prior information about the trajectory. The target acquisition

problem is an example of such a situation.

The second method is more of theoretical interest than as a candi-

date for a computational procedure. In this development the viewpoint is

taken that the output of a state estimator should be the conditional pro-

bability density function, conditioned upon all past data. Computational

difficulties arise from an effort to compute a complete function over the

entire state space as compared to a more conventional estimator which

selects a single point in the state space as the most likely state.

This study was particularly motivated by the difficulties encountered

in filtering radar returns from an airborne target. The target dynamics



are presumably describable by a linear dynamic system where the elements

of the state vector are the position and velocity of the target in car-

tesian coordinates measured from the radar. On the other hand, data avail-

able to a filter from the radar will usually be in spherical coordinates.

Thus there exists a known, nonlinear relationship or transformation be-

tween the state of the system and observations. The results of a series

of experiments using a filter based upon a simple linearization procedure

are reported in Demetry and Hudson [4]. The operation of the filter was

unsatisfactory under realistic conditions of initial uncertainty about

target position, i.e., where to evaluate the partials involved in the

linearization procedure.

The present work fills a gap in the field of nonlinear estimation for

problem in which there is little prior information and a computationally

feasible estimation procedure is required.

The problem is discussed and precisely formulated in Section 2. The

original filtering problem is replaced by an associated minimization prob-

lem. The work of Kalman is reviewed since it is known that the Kalman

filter is the solution to the associated minimization problem when the

observations are linear functions of the states. A special single-stage

form of the problem is considered. It is shown that the nonlinear obser-

vation problem can be approximated by a linear problem whose solution is

known from Kalman' s work. The resulting solution is then used to generate

a new approximation to the original problem. Each iteration of the above

process reduces the function to be minimized so long as the gradient is

non-zero. It is shown that the whole class of problems originally con-

sidered can be cast in the special single-stage form.

The problem may be said to be solved at this point; however, for real-

time calculations there must be procedures for controlling the number
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of iterations. Iteration control procedures are discussed along with

heuristic means for choosing the control parameters. Even with the num-

ber of iterations kept to a finite number, the computing requirements

would increase indefinitely since each new set of data generates a new

minimization problem over a larger number of variables. The control of

this effect is discussed by introducing the concept of noise generated

by the nonlinearities. The overall algorithm is discussed with respect

to implementation on a digital computer.

The method was used on a realistic radar tracking problem. The

models for the target and the radar are discussed. The results of the

study indicate that the method produces reasonable estimates of the states

of the system.
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2. Detailed Statement of the Problem.

The specification of the problem may be viewed as consisting of four

parts. Three of these are different types of information about the system

under observation and the last is an implicit statement of how the avail-

able information should be combined to form an estimate of the state of

the system.

The first type of information about the system is expressed by form-

ing a dynamic model of the system. In this way the relation between

states at different times is made explicit. It is only through the dy-

namic relation of the states that observations taken at diverse times

have any relation to one another. In general usage the term filter is

associated with a sequence of observations which are related to one

another (correlated). The states and the dynamic model embody this cor-

relation.

The second type of information is the relationship of the observa-

tion at a given time to the state at the same time.

The third type of information is the a priori knowledge about the

state of the system.

Finally the best estimate of the state is defined. In general, none

of the information about the state is definitive; it is all subject to

some uncertainty and except for this uncertainty, it would be contra-

dictory. The best estimate is defined to effect a certain compromise

among all of the available information.

Since the resulting definition is implicit, computational difficul-

ties occur. The resolution of these difficulties results in an explicit

procedure for producing an estimate which is almost best within a reason-

able computing time. Such an explicit procedure, or algorithm, will be

12



called a filter.

The Dynamic Model

The time evolution of the states of the system which is being observed

are assumed to be adequately described by a difference equation which is

linear in both the state and the excitation. The excitation is assumed to

be a white random time sequence which has known first and second moments

and is independent of the state. If the mean of the random excitation is

not zero, then the random signal can be decomposed into a deterministic

component and a zero-mean random component. The development will assume

that there is no deterministic component (or non-zero mean) . A short com-

ment will be made at the appropriate point outlining the required changes

for the case of deterministic inputs. These notions are concisely stated

in (1) through (4).

*(k+l) - $jr(k) + T/U)(k) (1)

Eru)(k)] ^ (2)

***) .u)
T

] - {I £ Jjj
o)

E[w(k) x(j)
T
] = for k£j (4)

where x is the state vector of n components,

r is a known n x r input distribution matrix,

u) is a random excitation of r components,

<f is a known r x n state transition matrix,

Ef ] is the expectation operation, and

T denotes the transpose.

Equation (1) expresses the linearity of the state dynamics while (2), (3),

and (4) express the qualities of zero mean, whiteness, and independence

respectively about the excitation. The assumption that the covariance

13



of <u(k) is the identity matrix involves no loss of generality as long as

r is appropriately chosen. Consider the two random excitations Tu) and

r'u)' where

E[u>] «

ElV] =

E|"u> U)
T
] s I

T
E[u>

f

U)' ] = Q

By comparing first and second moments, the two random excitations are

T T
equivalent if T T = T'OT • Q is a covariance matrix and thus is sym-

metric and positive semi-definite. This implies that a decomposition can

T
be found such that B B = Q, and r T'B.

The Observations

The data available to the filter are nonlinear functions of the

state corrupted by additive white noise. The functional relation is

assumed to be twice differentiable in the state. The corrupting noise

is assumed to have zero mean and known variance. The noise is assumed

to be independent of the states and the excitation. These notions are

concisely expressed as

*(k) = hCe(k)) + u(k) (5)

El>(k)] - (6)

*»«•«>*]- ft £ Si <7 >

E[u(k) *(j)
T
] = (8)

E!"u(k) u)(j)
T
] « (9)

where z (k) is an m vector of observations at time k,

u(k) is an m vector of noise at time k,

h( ) is an m vector of nonlinear functions of the states

14



A is the ra x m covariance matrix of the measurement noise.

A Priori Information

In view of (1) any information relative to jr(k) must also be consid-

ered when estimating JC(k-H) . In conventional linear sequential stage-by-

stage estimation one can consider two distinct phases. The first is to

bring forward all information from the past observations in the form of

an a priori estimate using (1). The second phase is then to adjust this

a priori estimate in view of the actual observations of the state. This

is repeated from stage to stage. Clearly this process must start with a

given a priori estimate for the first state. Sometimes this a priori

estimate serves merely as a mathematical convenience for starting the fil-

ter [9]. In other cases an appropriate a priori estimate is really avail-

able. In any case an a priori estimate takes the form of an estimate of

the initial state coupled with a measure of the accuracy of this estimate,

the covariance of the error, defined as

E[(r(l)-r(l/0)) (*(1/0))
T

] s P(l/U) (10)

E[.r(l)-0f(l/0)] » (11)

where Jf(l/U) is the a priori estimate of JP(1), and

P(l/0) is the covariance of the a priori estimate.

The double index argument will be used throughout to indicate an estimate

of the state associated with the first index based on observations up to

and including those associated with the second index.

Definition of Best Estimate

The best estimate of sequence of states x(l) through r(k) will be

called J?(l/k) through j-(k/k) and is defined as that sequence which mini-

mizes the scalar quantity

15



CO<l/k), *(2/k), ..., *(k/k)] -
||
*(l/k) - x(VO)

||J

k

+ ^|| x(i/k) -**(i-l/k)
(J

is2
2

k

^|| *(i) - hC*(i/k))||£ (12)

i=l
3

where the norm notation is introduced for compactness. By definition

||b|| is equivalent to b Ab and the result is a scalar which is a quad-
A

ratic function of the elements of b.

A best estimate defined in this manner might be called a weighted-

least-squares estimate generalized to include the case where the quantity

to be estimated is changing somewhat randomly in time.

The three different types of terms correspond to (10), (1), and (5)

respectively. The terms inside the vertical bars are called residuals.

The residuals are the difference between the expected value of a function

of the true states and that same function evaluated at the estimate of

the state.

This definition of the best estimate can be interpreted in several

ways which will be developed below. These interpretations cannot in any

sense prove that estimates defined in this way are best. The most that

can be hoped for is that the interpretations offered will enhance the

reasonableness of the resulting estimate. It must be realized that the

best estimate is only what it is defined to be, which, in the final anal-

ysis is certainly somewhat arbitrary.

First, if all of the random sequences are assumed to be sequences of

Gaussian (or normal) random variables, then it is possible to compute the

probability of the observed data for a given sequence of states. This

probability is viewed as a function of the true states. That sequence of

16



the states which maximizes the probability is taken as an estimate of

the true states. The probability is commonly called the likelihood and

can be expressed as

L(#(l), *(2), ..., X(k)) - K exp [- | C(*(l), x(2) , .... *(k))]

where K is a constant which is independent of the states if the weighing

matrices are chosen as

W
t

- -PC1/0)"
1

(13)

W
2

- (riV 1
(14)

W
3

-Z?'
1

(15)

The covariances are assumed to be nonsingular for simplicity. For

a detailed discussion of the case of singluar covariance matrix see

Appendix I. It is clear that to maximize L one must minimize C. Thus

for the case of Gaussian random variables the best estimate will be the

so called maximum likelihood estimate.

A second point of view is that it would be desirable to find an

estimate which resulted in zero residuals; requiring zero residuals, how-

ever, would imply a larger number of constraints than there are adjustable

parameters (estimates). This suggests that the best estimate would be

some sort of compromise where all of the residuals are small. Such a com-

promise is effected by setting up a weighted sum of squares of the re-

siduals, C, as a function of the estimates, and selecting (or defining

in this case) that set of estimates which minimize C as the best esti-

mate.

In general, the best estimate will depend upon the weighting chosen

for each residual. In order to determine the appropriate weighting mat-

rices it is helpful to consider under what circumstances equal weighting

would be appropriate. A heuristically reasonable answer might be to

17



weight equally when each of the random components have the same variance.

If each of the sets of equations are multiplied by appropriate matrices

new random variables can be defined so that each has unit variance. The

residuals from these new equations are computed and their squares all

weighted equally. In this form the residuals have an intuitively rea-

sonable weighting. But it can be shown that this is equivalent to

weighting the original residuals with the inverse of the corresponding

covariance.

A very simple example should clarify the argument. Consider the

problem of estimating x from two observations

Z
x
= h

1
Cxr) + V

x

2
2
= h

2
0?) + v

2

where EfU,] 0,

E!"l>
2
] = 0,

EruJ] * o\>

EfU^ a
2

2
-

Dividing the first equation by o, and the second by a 2
yields

*l
/a

i
" h

i
(,r)/a

i
+ u

i

and *2^a2 " h
2
(jp^ /a

2
+ U

2

where u, and u. are unit variance random variables. So the sum of squared

residuals is formed

cCx) - (f
1
h

l
- h^ )h

x
)

2
+ u 2

/a
2

- h
2
0c)/a

2
)

2

but this is equivalent to

C(r) « G^-h^J))
2/*** (m

2
- h

2
(xr))

2
/a

2
.
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Therefore, If it is reasonable to weight equally residuals associated

with random variables of equal variance then it follows for unequal vari-

ances the weighting should be in inverse proportion to the variance.

Another point of view is that the weighting matrices W , W and W

are chosen directly without recourse to any assumed random variables.

There is, of course, an equivalent problem cast in terms of random vari-

ables. It is the author's view that it is easier to assess the magnitude

of the variances of the random variables than to choose an appropriate

set of weighting matrices directly.

A general model of the underlying physical process which generates

the data has been presented. For any real physical situation the para-

meters $, r, /?, tf(l/0) and P(l/0) will be numerical quantites and the non-

linear functions h(x) will be a vector of explicit functions. This is the

type of information which a filter designer must have before the filter

can be constructed. For a given model there are many possible filters

which might be considered; in each case presumably the output of the fil-

ter would be best in some sense, often unspecified. The filter under

consideration in this work is defined by the sense in which the estimates

are best, i.e., the filter is a least-squared-residuals filter. Thus, it

should be noted that the filtering problem has been transformed into a

sequence of minimization problems. It will turn out that the solution to

each minimization problem is itself a sequence of solutions to a much

simpler minimization problem, namely the problem with linear observation

functions. The solution to this simpler problem is well known and is

discussed in the next section along with other filter techniques where

the model is similar to the one described in this section.
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3. Prior Work.

The field of state estimation has received a great deal of interest

recently, especially since the work of R. E. Kalman f7] and R. E. Kalman

and R. Bucy [8] in linear estimation theory. For a comprehensive survey

of the general field of estimation Deutsch f*6] is suggested. Lee [9]

presents a fine treatment of the theory, particularly with respect to the

relationship between control and estimation theory. Cox [2, 3] is a

specialized review of the efforts in the area of nonlinear estimation of

which this work is a special case.

The structure of the problem and the results obtained by Kalman [7]

along with several extensions, modifications and alternate interpretations

are discussed in some detail. This discussion provides a convenient refer-

ence for comparison of the results of this thesis as well as an opportunity

to establish certain known results which will be needed in the development

of the method that follows. The method of trajectory linearization is dis-

cussed and it is shown how a natural extension leads to the method used

here.

Kalman Filter

Kalman [7] has solved a special case of the problem under consider-

ation where the measurements are linear functions of the state.

Symbolically

*(k) - H *(k) + u(k) (16)

replaces (5)

.

Two cases are considered. In the first, all of the random sequences

are assumed to be sequences of Gaussian random variables. With this as-

sumption, the estimate is shown to be optimum in the sense that any linear

function of the estimate is the minimum variance estimate of the same

20



linear function of the true state. The estimate turns out to be a linear

function of the observations.

In the second case, there are no assumptions about the form of the

probability density functions of the random variables, but the estimate

is assumed to be a linear function of the observations. The optimum

estimate is defined in the same way.

In either case the method of computing the optimum estimate (the

filter) is the same. The sequence of operations can be envisioned as

consisting of two steps. The first will be called the prediction equation

*(k+l/k) . 4*(k/k) (17)

The double argument notation will always indicate an estimate. The left

side should be read; the estimate of the state at time k+1 given data up

to time k. The second step will be called the adjustment for newly re-

ceived data.

je(k+l/k+l) = *(k+l/k) + <?(k) O(kfl) - H jc(k+l/k)] (18)

where (>(k+l) - H jc(kfl/k)] is the error in the predicted observations,

and£(k) is a matrix of adjustment coefficients. The matrix G (k) reflects

the relative confidence one should have in the observed data as compared

to the predicted estimate. This is discussed in [ 9~\

.

G(k) = P(k+ 1/k) ff
T

\H P(k+ 1/k) H
T
+ 7?]"

1
(19)

Where P(k+l/k) is the covariance of the estimates defined as follows:

P(k+l/k) = ErC*(k+l/k) - x(k+l))Cx(k+l/k) - jc(kf l)
1
)] . (20)

This formulation then requires that one must keep track of the co-

variance of the estimates. This is also done in two steps.

P(k+ 1/k) = $ ?(k/k) $
T
+ r I* (21)

P(k+l/k+ 1) =

P(k+l/k) - P(kf 1/k) H
T

[H P(k+l/k) H
T
+ -ft]"

1
H P(k+l/k) (22)
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Rauch [13] has derived these same equations based on the Gaussian

assumption and shown the resulting estimate is the conditional mean and

the maximum likelihood estimate.

Lee [9] has shown that the same equations yield a weighted least

squared residual estimate where the weightings are the inverses of the

covariance matrices. This also follows from the derivation of the maxi-

mum likelihood estimate based upon the assumption that the random se-

quences are Gaussian.

Trajectory Linearization

The trajectory linearization method has been used to solve nonlinear

filtering problems such as orbit determination for artificial satellites

[10], [11]. It is assumed from physical considerations that the evolution

of the system state satisfies a general difference equation of the form

x°(k+l) = fCr(k), uo(k), k) (23)

and that observations are available in the form

*(k) = hU(k), u(k), k) (24)

where oi(k) and v(k) are random vectors.

It is further assumed that there is a known nominal trajectory which

is a sequence of states x (k) such that

*°(k+l) = f0c°(k), 0, k) . ^25)

It is desired to find the best estimate of the deviation of the true

state from the nominal state.

Defining

^(k+1) m x (k+l) - *°(k+l) (26)

and substituting (23) and (25) into (26) results in

j/(k+l) = fCr(k), u)(k), k) - fC*°(k), 0, k) . (27)

This relation is now approximated by a first order Taylor series about

22



the point jc(k) = x°(k) and u)(k) - 0. The two partial derivatives are

given appropriate symbols.

4 (k) f 0c°(k), 0, k) (28)
X

r (k) f^OO, 0, k) (29)

The first order Taylor series expansion results in

j/(k+l) = f0c°(k), 0, k) + $(k) [,y(k) - x°(k)]

+ T(k) m(k) - fU°(k), 0, k) . (30)

Substitution of (26) in (30) results in

j/(k+l) « <|(k) i/(k) + T(k) u>(k) . (31)

From the nominal trajectory it is possible to construct a nominal

set of observations

*°(k) = h0c°(k), 0, k) . (32)

Consider the deviations of the observations about the nominal obser-

vations.

U(k) 2*(k) - *°(k) (33)

Substituting (24) and (32) in (33) yields

u(k) = hCr(k), y(k), k) - hCr°(k), 0, k) (34)

The relation is approximated by a first order Taylor series about

the point .r(k) = x (k) and u(k) = 0. The two partial derivatives are

given appropriate symbols

#(k) s h
f
(r°(k) > : k) (35)

S(k) e h
u
Cf°(k), 0, k) (36)

u(k)~ hCr°(k), 0, k) + ¥(k) fje(k) - *°(k)]

+ S(k) y(k) - h(r°(k), 0, k) (37)

Substitution of (2b) in (37) yields

u(k) * ff(k) y(k) + S(k) u(k) (38)

23



Although it was not noted in the description of the Kalraan filter,

it is true that the equations remain valid if any or all of the matrices

*, H> r, B, are known functions of time. These filter equations are thus

directly applicable to (31) and (38).

The purpose of the process of trajectory linearization is to generate

(31) and (38). It is then noted that with respect to the states j/(k) and

the observations u(k) the model is in the form of a linear dynamic system

and linear observations. The Kalman filter is then applied directl> as

though (31) and (38) were equalities.

Nonlinear Noise

A question naturally arises concerning the adequacy of the first ord-

er approximation in developing (31) and (38). The heart of this problem

is investigated by Denham and Pines T5] through the use of a very simpli-

fied model and a number of Monte Carlo studies. They reach the conclusion

that the difficulties are of an indirect nature. The first estimates are

about as good as might be expected. In processing subsequent data, how-

ever, trouble develops because the assumed quality of the first estimate

is too great, which means that the next data get weighted too lightly.

This effect can be best seen by reconsidering (31). In order to make

this expression into an equality, all of the higher order terms must ">e

added to the right side of the expression. These additional terms should

be considered as part of the observation noise. It is the failure to

account for this nonlinear noise in the Kalman filter that causes the dis-

crepancy between the covariance of the estimates as computed in the filter

and the true average squared estimation errors. When the calculated co-

variance overstates the quality of a given estimate, a subsequent obser-

vation will certainly be combined with the current estimate in a non-

24



opt imum manner

.

Denham and Pines point out that when the order of magnitude of the

expected value of the neglected terms is of the order of the natural

measurement noise one cannot expect the linearized filter to work proper-

ly. The expression for the "nonlinear noise" involves the difference

between the true state and the point about which the linearization takes

place. If there were some way to reduce this difference then the nonlinear

noise would be reduced correspondingly. These authors attribute to John

Breakwell an iterative procedure for accomplishing this. The procedure

is to linearize and filter, then relinearize at the new estimate and fil-

ter again. This cycle is repeated until the output of the filter is the

same as the point at which the linearization takes place. A Monte Carlo

study using this iterative technique revealed that the computed covariances

quite accurately reflected the quality of the estimates.

It will be noted that the method used to solve the least-squared -re-

sidual problem as developed in the next section is exactly the iterative

method suggested by Breakwell.

25



4. Development of the Solution Algorithm.

The development will proceed in two phases, the first being a con-

ceptual means of finding the absolute best estimate, the second being the

development of a series of compromises required for computational feasi-

bility.

The minimization of (12) will have to be carried out in an iterative

fashion since the simple process of differentiating and setting to zero

does not lead to an explicit formula for the state estimates as it would

if the observation functions were linear. The iterative procedure is

based upon a linearization of the observation functions. The linearized

observations are then in the form (16) and minimization is carried out

using the Kalman filter equations. This produces a set of state estimates

about which the nonlinear functions can be relinearized. This process is

repeated until there is no further change in the state estimates.

The Kalman filter in its normal form is not completely adequate since

its output is the sequence of estimates je(l/l) through jp(k/k) while the

point about which it is desired to linearize is ,y(l/k) through ,#(k/k) .

These latter estimates are called the smoothed estimates. There are for-

mulas available, due to Rauch [13], for converting the output of the Kalman

filter into smoothed estimates. There is, however, a more convenient way

to get the same results in this case where all of the smoothed estimates

are required. This involves converting from a multistage problem to a

single-stage problem with a proportionately enlarged state space. The de-

tails of this conversion will be discussed following the discussion of the

iteration for the single-stage process.
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5. The Single Stage Minimization Procedure.

The equations related to the single-stage process are rewritten here

using a simplified notation and are numbered using the same numbers as in

their first appearance with an ' added.

z a h(x) + V (5')

E[u] . (6')

E[UU
T

] = B (7')

Eru*
T
] - (8')

ErC*-* )Cx-* )
T
] = PQ

(10')

Erjc-jf
o
] = (ii')

CO^) = \\x
x

- xj\
2

p
-1 + Ik - hCr^U V"l (12,)

o

where

2 is a vector of observations,

y is the noise in these observations,

B is covariance of the noise,

X is the a priori estimate of the true state x>

X, is the new estimate of x, and

P is the covariance of the a priori estimate.
o r

The pertinent equations from the solution to the linear problem are

also rewritten here .

z = H x + v (16')

X
X
= xQ + G(*-Hx

Q
) (18')

g = pjprH p
o
h
t
+ ;?]" 1

(19')

The non-singularity of P assumed in (12') is fully discussed in

Appendix I. It is sufficient here to say that if p is singular the
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problem can be reduced to a smaller state space where the associated P

is non-singular. It will always be assumed that B is non-singular, i.e.,

the assumption is made that there are no observations of unlimited ac-

curacy.

The iterative minimization procedure involves a linear (first-order)

approximation to (5') about a point x, which will always be the best

available estimate of x* This linearized approximation is then manipulat-

ed to form a synthetic observation which has the form (16'). This syn-

thetic observation is used in (18') and a new approximation to the best

estimate is obtained. Using this estimate as the point of linearization

of (5*) the process is repeated. These steps are expressed symbolically

as follows.

Z = h(x[) + h^ (x[) [*-**] + v (39)

where jf, is the ith approximation to the best estimate x .

Z
L
= Z - hCxJ) + tf

1
x
\

(40)

z
i
= H

i
x + v (41)

where z is the so-called synthetic observation and

ff
1
- \<*\) (42)

x
\

+l
= X ^G% i

-H
i
x
Q
) (43)

where

G
l
= P

Q
H
iT

[ff
l
P
o
tf
iT

+ tf]"
1

(44)

This completes the description of the pure minimization algorithm

except for a specification of the initial point of linearization and the

possibility of overshoot. Discussion on the initial point of linearization

will follow after the discussion of conversion from multi-stage to single
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stage. The possibility of an overshoot results from the fact that a

simple first order approximation to the nonlinearity may not be accurate

for the subsequent change in x , • The overshoot protection scheme used

is simply if

C(jfJ
+1

) * C(x[)

then x. is replaced by 1/2 (x. + x, )*

It will now be shown that each step in this process does result in

a decrease in the cost, C. Since if the new cost is greater than the old

cost the step size, # - jf , is reduced by a factor of 2 it only is

necessary to show that for a small enough step size there will be a re-

duction in C. The demonstration will be begun by showing that the change

in estimate is related to the negative gradient of the cost evaluated at

X-, by a positive definite matrix.

g(x[) = -k C
x (x[) (45)

gOffJ) = P"
l

<X -x[) + H
iT

fi~
l
[2-h(x\)] (46)

The change in the iterate is

d jc
1

- x
l

(47)

d = x
Q

- x[ + tfWj^] (48)

d a x
Q

- x[ + G\z-h(x[) + ff^J-ff*,,] (49)

d = Tl-(?V]0e
o-^J)

+ C^-hCrJ)] (50)

Now to show that

d = rVPo#
1T ^Vy1

+ BT 1 ^P
o] gOc*) (51)

it must be shown that
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[i - oV] = cp -p/
t

c#ViT + ;?]

" 1^ V 1
(52)

and that

C?

1
= [P

o-PJi
iT ifojF + *]" 1

ff
l
J> ] ff"*"

1
• (53)

The first of these is obvious after substituting for G .

iT
In the latter P R'is factored from the left side to obtain

o

P
o
H
iT

[I - {H
i
P H

iT
+ JlY

1 FV/iT
] J?" .

and then [tf
1
? #

lT
+ P]"

1
\H

LPHt'
L
+ *] is substituted for the I above.

p #
iT

r^p #
iT

+ pi"
1 iVp #

iT
+ P - fV/11

]
p" 1

o o o o

After cancellation, Che above is the expression for G .

Note the matrix P
Q
-p #

lT
[H

±
PJi

XT
+ P]"

1
P

L
P is the covariance of

the updated estimate in the linear case so it will be given the special

symbol

P
l ~ P

o " P/
1T ^o^ + P]

" 1

^
lp

o
(54)

so that (51) can be written

d = Pl8 C*i) (55)

After applying the overshoot control the actual change of the iterate

is in the direction of d but may have a smaller magnitude. Let D be the

actual change so that

D = qd (56)

D = qPlg C*J) (57)

where q is some integral power of (1/2).

Then to a first- order approximation the change in C, AC, is given by

AC. 2g
T
D (58)

AC= 2q g
T
d (59)
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AC? 2q g
T
Plg

(60)

AC=2q||g||2 (61)
r

l

Since all higher order terms in the expansion of AC involve higher powers

of q it can be asserted that for some small enough q the first order term

will dominate. Thus for some suitable q the change in C will be negative

for any non-zero g if P is a positive definite matrix. P. is known from

the linear theory to be positive definite for any value of H and any

positive definite .ft. This also follows from the fact that

-1 -1 iT-ll
P

x

l
= PQ

l
+ H V? V (62)

a convenient matrix identity discussed in r 1] , and the fact that the in-

verse of a positive definite matrix is positive definite.

It has been shown that the special single- stage problem can be solved

by solving a sequence of simple problems which approximate more and more

closely the real problem. Each iteration was shown to reduce the cost

unless the gradient of the cost was zero.

In the next section it will be shown that the general problem con-

sidered in this method can be recast in the form of a single-stage prob-

lem.
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6. Multi-stage Case Cast in Single stage Form.

The process of converting a multi-stage estimation problem into a

single stage problem is accomplished by defining the new state to be the

juxtaposition of the states at the various stages. The process will be

carried out in detail for a two- stage problem and then the process will

be generalized by induction for a k-stage process.

Let the new state be

X =

*(2)

(63)

let the new estimate be

1
[*(2/2)|

(64)

let the a priori for the new state be

and let the a priori covariance of the new state be

(65)

Po*
P(l,l/0) P(l,2/0)

p
l
(l,2/0)\ P(2,2/0)

166)

Some of the elements in x and F have not been previously defined.

However, the notation used has already been defined, i.e., #(2/0) means

the estimate of the second state given no data. The submatrices in P
o

are defined as follows:

P(i,j/0) h E[C*(i/0) - *(i»(*(j/0) -*(j))
T
] (67)

This is a natural extension of the double argument notation alreay defined

which is necessary to accomodate consideration of the cross correlation

between states at various times. Since these new elements are not given

directly in the multi-stage model it will be necessary to fill in these
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elements in order to define the single-stage model.

First consider x(.2/0) . Based upon the requirement that (11) be sat-

isfied it must be true that

jc(2/0) = E[*(2)] . (68)

Substituting for x(2) from (1) and taking advantage of (2), the fact that

U)(l) has mean zero, yields

*(2/0) = $>E[>(1)] . (69)

Introducing (11) above yields

*(2/0) = <fc*(l/0) . (70)

If there are deterministic inputs (or equivalently Ef"u)(k)] ^ 0) the

appropriate modification is

JC(2/0) =: £#(1/0) + T El"u>(D] . (71)

Now consider the various submatrices of P . p(l,l/0) is already

known in the multi-stage problem as ?(l/0). p(l,2/0) is given by

P(l,2/0) = ErCed/0) -*(l))(*(2/0) -jc(2))
T
] . (72)

Substituting (70) and (1) in the last part of (72) yields

P(l,2/0) = E[Cr(l/0) - *(1))(*jc (1/0) - $#(1) - ru)(l))
T
] . (73)

T
Taking advantage of the independence of uu(l) from (2) and factoring *

yields

P(l,2/0) = E[U(l/0) - *(l))C*(l/0) - je(l))
T
]*

T
(74)

but this is just

P(l,2/0) = P(1/0)<J>
T

. (75)

By similar arguments it can be shown that

P(2,l/0) = *P(l/0) (76)

and

P(2,2/0) = 4>K1/0)4
T
+ rrT

. (78)

The remaining elements needed to complete the description of the single-
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stage model have to do with the observation process,

Let the actual observations be

(79)

let the vector of observation functions be

h(jf) =
[h(*(l))I

[hC*<2))|

(80)

let the measurement noise be

(81)

and let the measurement noise covariance be

"jf?
! 6

B =

o . n
(82)

where the off-diagonal elements of R are zero matrices in view of the

whiteness of the observation noise.

As the number of stages is increased, the dimension of the single-

stage x is also increased. The process of expanding the single-stage

model of a k stage model to that of a (k + 1) -stage model is

explained in detail only for x, x , and P . The expansion process or aug-

mentation for the remaining elements of the model is as simple as the aug-

mentation of x will prove to be. The augmentation of x is shown explicitly

as an example.

In the augmentation process x goes from

r*an

X =

*0O

to

*(1)

*(k)

*(k + 1)

34



The expansion of x is only slightly more involved. For the (k + 1)-

stage case the a priori estimate is

*(l/0)

*o
=

*(k/0)

*(k + 1/0)

(83)

where #(k + 1/0) = <f«f(k/0)

.

The structure of the P corresponding to the (k + l)-stage case is a

(k + 1) by (k + 1) square matrix whose elements are submatrices. The

upper left k by k part of this matrix is already known from the p assoc-

iated with the k-stage model. Thus to expand to the k + 1 case it is only

necessary to fill in the lower border. The a priori covariance P has the

form

^o
=

P(l,l/0) . . . ?(l,k/0)

P(k,l/0) . . . P(k,k/0)

P(l,k + 1/0)

P(k,k + 1/0)
(84)

P(k + l,i/0) = tP (k,i/0) for 1 £ i £ k

,T.

P(k » 1,1/0) . . . P(k + l,k/0) ' ?(k+ 1, k+ 1/0

The formulas below for the new border elements of p were derived in ex-
o

actly the same way the submatrices P(l ,2/0) , p(2,l/0) and P(2,2/0) were

found in the case for k + 1 = 2.

(85)

P(i,k + 1/0) = P*(k + l,i/0) for 1 £ i £ k (86)

P(k + l,k + 1/0) = $P (k,k/0) $
T +rrr

(87)

Thus it is clear that the dynamic relations represented by (1) for the

multi-stage problem are incorporated into the very special structure of

the large covariance matrix P in the single-stage equivalent.

After a given multi-stage problem has been cast in single-stage form,
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the single-stage problem is solved using the methods previously described.

The outcome of the single-stage solution is the best estimate, x+, which

must then be interpreted in terms of the original multi-stage problem.

The best estimate, x-,, is the best estimate of all states given all data

up to the present stage, i.e.

*<l/k)|

*1 = (88)

*(k/k)

Finally, as each new single-stage solution process is started there

must be an inital estimate of x-, which is called x-, • The first iterate

for a (k + l)-stage minimization will be based on the final estimate from

the previous minimization over k stages. Explicitly, the first iterate is

given by

jcd/k)

*1-

JC(k/k)

*(k + 1/k)

(89)

i

where *(k + 1/k) - $r(k/k)
( 90 )

At this stage in the development of the filter, the problem has been

solved but in a very impractical way. The filter has been broken into an

unlimited sequence of minimization problems. Each minimization problem

is solved through an as yet unlimited sequence of approximate solutions.

In order to design a practical filter a realistic convergence test must

be used to terminate the minimization process. Such a convergence test

is discussed in the next section. Another difficulty arises in connection

36



with the sequence of minimization problems. As more and more data are

considered, spanning a larger and larger collection of states, the size

of the minimization problem increases A practical means of limiting

the size (dimensionality) of the minimization problem will be discussed

in a subsequent section.
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7. Criteria for Termination of the Minimization Procedure.

It seems to be a universal feature of any iterative numerical method

that the termination decision is based upon "feel" or "rules of thumb".

Typically, a quantity is chosen as a measure of the convergence of the

iterative process and this measure is compared against a standard or

threshold. Fortunately, in this particular case it is possible to offer

some insight into the choice of both the measure and the standard or

threshold. This is true because the problem is basically a stochastic

one. By analogy with certain special cases it is possible to approximate

the probability density function of the measure of interest.

The control law or algorithm for the control of the number of itera-

tions is based upon the fact that the minimum cost, GO?.)* is itself a

random variable whose distribution function caw. be approximated by that

of a chi square random variable. The minimum cost is exactly distributed

as a chi square variable when the measurements are linearly related to

the states and all of the random variables are Gaussian. The chi square

distribution is characterized by a parameter called the number of degrees

of freedom. For the least square problem the number of degrees of free-

dom is the number of constraint equations less the number of parameters

adjusted in the process of minimizing the sum of the sqwares

.

Using this assumed distribution function for the minimum value of C

it is possible to evaluate numerically the probability of a minimim C being

greater than some number C • Actually the question is reversed so that a

C. is found such that the probability that a minimum C is greater than C.

is some small number ot . This number C (<*) is then used as a threshold for

comparison with the actual value of G after «ach iteration. If C is

greater than C. the process is reiterated on the assumption that it is
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very improbable that this value of C is in fact a minimum.

Clearly using such a test will reject a certain number of true mini-

mum calues of C. For this small percentage (<*) of cases, the stopping

criteria is based upon the relative change in state estimates. When the

relative change in each component of the state vector after an iteration

is less than some small number, EPS, the successive estimates are con-

sidered to be equal and the process is terminated.

On the other hand, passing this first test does not assure that a

minimum has been reached. For this reason, a second test is prescribed

which specifies a minimum improvement. Choosing the minimum improvement,

C.., may be considered purely arbitrary. On the other hand it may be

helpful to invoke a statistical interpretation to aid in choosing Cw .

Such an interpretation exists if all of the random sequences are Gaussian.

Then C(x ) is related to the likelihood of x and C(.r )~C(x ) is related

to the likelihood ratio. The likelihood ratio is a common statistic used

to test the significance of the difference between two estimates.

The difference is considered to be significant at the 3 level if the

probability of occurrence of the observed likelihood ratios is less than

3 under the assumption that X is the true state. The test of statisti-

cal significance is made by setting a threshold on the likelihood ratio,

or some function of it. The difference, Q,(x.)-Q,(x. ), is minus twice the

likelihood ratio and has a chi square distribution with the number of de-

grees of freedom equal to the number of components in the state, x. C it

chosen as that value for which the probability of a chi square variable

less than C is 3 . The test is: if C(Jf )-C(x ) is greater than C re-
L L

iterate, otherwise terminate the procedure. The satisfaction of the test

suggests the interpretation that the last two estimates are not significantly
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different so no further iteration is carried out.

The convergence test described may be summarized in terms of three

quantities involved in the minimization process and three thresholds.

The three quantities are 1) r, the maximum absolute relative change in

any component of the state vector from one iteration to the next ,2) C
,

the current value of the cost and 3)(C -C ), the change in the cost over

the last iteration. The corresponding three threshold parameters are

EPS, Cw , C . The decision rules for terminating or continuing the pro-
N L

cess are displayed in Figure 1.

Figure 1. Flow graph of the criteria for iteration termination.
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As an example, consider a single stage minimization where the state

has six components and the measurement has four components. The pro-

bability that a chi square variable having four degrees of freedom will

have a value greater than 14.9 is 0.005. This suggests that if C * 14.9
Id

only one true minimum out of 200 will be rejected by this test. The prob-

ability that a chi square variable with six degrees of freedom will be

less than 0.872 is 0.01. If C(^
i
)-C(Jf

" )-C =.872 the last two iterations
M

are not significantly different at a0.99 confidence level. Finally, for

those unusual cases where the true minimum is greater than 14.9 the

iterations are continued until the iteration values are the same within

the limitations of computer word length. For the CDC 1604 the floating

operations carry about ten significant digits. It should be considered

that absolute convergence has been attained when the relative change in

all of the components of the estimate do not change more than one part in

9 -9
10 . This indicates a choice for EPS of 10 .

The remarks of this section were directed toward providing some in-

sight into the choice of the threshold parameters. While the assumptions

which would make these interpretations rigorous may in most cases be

lacking, the filter designer must incorporate a convergence test, i.e., he

must choose a set of parameters. The interpretations discussed above are

offered as an aid toward choosing an efficient set of parameters.
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8. Criteria for the Number of Smoothing Stages to be Carried.

As a result of the way in which the best estimate has been defined,

the complexity of the algorithm increases with the number of stages over

which data is available. The estimate of state at the initial time is

the result of a minimization involving n (number of components in the state

vector) variables. The estimate of the state at the time of the twelfth

measurement would be the result of a minimization over 12n variables.

Clearly, proceeding in this way the computational requirements will ex-

ceed the capabilities of any computer after a finite number of stages.

The work of Denham and Pines [5] has focused attention on the dif-

ference between the case where the measurements are linear in the states

and the more general nonlinear case. This difference was shown to be the

result of neglecting higher-order terms in the expansion of the measure-

ment function. The minimization over many stages may be viewed as a means

of avoiding this problem since each linearization is only tentative. As

new data become available, providing more information about the old states,

the linearization of the measurement functions becomes more accurate.

When the state is known well enough so that the second-order terms are

negligible, the linearized measurement is considered to be accurate. This

approach will be developed into a criterion for the number of smoothing

stages which must be carried in the next minimization process.

Consider a second-order expansion of a single nonlinear observation

function about a point x •

z - hCr°) + h Cx°)(jc-x°) + h<jc~x°) h fce°) Cr-*°) + v (91)
•* XX

where h Of ) is a row vector of partial derivatives of h evaluated atX

X and h (x ) is the symmetric matrix of second partials of h evaluatedXX
o

at x •
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In order to form a synthetic observation, z , of the form of (16),

the synthetic observation must be a linear function of the true state

with added noise which has zero mean.

Z° * z - hOf°) + h C*°) *° - b (92)

z°=Hx + v + v %

(93)

where H = h Oe ) and
X

b = h Er0f-J«f
O

) b<X°)<X'X°)] (94)
XX

and v' is the variation of the second -order term about its mean.b.

The added noise V 1 is considered to be the random noise caused by

the linearizing process. The magnitude of this nonlinear noise can be

measured in terms of its variance, ft' . Expressions for evaluating b

and J?
1 are developed in Appendix II.

The process of dropping a stage of smoothing is a lumping operation.

It can be seen by examining the equations for the linear filter that all

past data is brought forward in time through (17) and (21). This is not

done immediately in the nonlinear filter because the observation equations

have been linearized at a point which may be quite different from the true

state. By keeping several stages active in the filter it is possible to

perform the linearization at a point much closer to the true state. The

dropping of a stage should be accompanied by a high degree of confidence

that the last linearization was performed at a point close to the true

state. That is, H is not going to change significantly as better esti-

mates of the true state become available. The invariance of H is related

to the expression for P, ' = %:race[h Of )P] since h (x ) represents the
XX XX

variability of H with x and P represents the variance of x • Thus when

the natural noise in each element of the observation vector for a given
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stage is an order of magnitude greater than the nonlinear noise, the

stage corresponding to observation no longer carried.

The mechanics of lumping are quite straight forward once it has

been decided that the current linearization is a good approximation.

Under these conditions, the Kalman sequential filter equations are dir-

ectly applicable. If these equations are applied to those stages which

are to be lumped, the result will be an a priori estimate of the first

state which is not to be lumped. The states which have been lumped no

longer appear. All of the information that these states carried with

respect to the estimation of future states is characterized by the a

priori estimate of the first state which is not lumped. From this point

then, the problem has exactly the same structure as the problem before

lumping except that there are fewer stages being carried.
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9. Computation of the Solution.

The basic features of the algorithm are shown in Figure 2. The

following is a brief resume of the quantities which must be computed in

order to implement the filter. Consider the overshoot decision. In or-

der to decide whether an overshoot has occurred it will be necessary to

evaluate the cost, C. For this purpose the multi-stage expression (12)

is more convenient than the single stage expression (12
1

). To test for

convergence it is necessary to have the current cost, the previous cost,

the current estimate, the previous estimate and the two parameters C

and Cu which are functions of the number of smoothing stages currently

being carried. The decision on the number of stages to be carried de-

pends upon an evaluation of the nonlinear noise associated with each

observation. In order to evaluate this nonlinear noise, the matrix of

second partial derivatives of the observation functions must be computed

at the current best estimate of the true state. In addition, there must

be available a covariance matrix representing the uncertainty of this

estimate.

Computation of the Cost

In general there are many means of computing a given quantity. It

turns out that the expressions for some quantities are useful in discus-

sing the problem but are not the most efficient in actual computation.

Such is the case with the cost C. For discussion purposes the cost was

expressed in terms of the single-stage state variable. For computing

the cost at an actual estimate, however, the form of (12) is more effic-

ient.

The first term is handled as follows:

||*(l/0) - *<l/k)||* = ||B(x<l/0) - *(l/k))||2 (95)
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Figure 2. Flow graph of overall procedure.
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where W, = P (1/0) (the pseudo inverse of P(l/0)) and B is chosen so that

the equality holds which implies that B satisfies

B
T
B = P

#
(l/0) . (96)

A suitable B is found by a special routine which begins by decomposing

P(l/0) into the form

P(l/0) = AA
T

(97)

where A is an n x r matrix and r is the rank of P(l/0). If r = n then

PV/O) = P
_1

(l/0) and (98)

B = A"
1

. (99)

If r £ n then

P
#
(l/0) = A

TV (100)

# # # T -1 T
which implies that B = A and A can be computed by A = (A A) A , where

T
the indicated inverse is known to exist by construction. That is, A A is

r x r and has rank r so it is non-singular. The routine which computes A

also computes A if it exists, with only minor additional labor.

For most applications P(l/0) will not be singular even though the

single -stage covariance will be singular if T has rank less than the

system order. It is for this reason that the procedure adopted has a

built-in flexibility to handle the singular case but handles the non-

singular case with virtually no loss of computational efficiency over the

more conventional approach of inverting directly the covariance matrix

P(l/0).

Evaluating the typical second term in (12) is accomplished in a

similar fashion

|U(i/k) - 4*<i-l/k)||j| = Hs^U/k) - S^d-l/k)^ (101)

where W9 = (T T ) • Since T and $ are assumed to be constant throughout
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the problem S, and S
2
can be computed beforehand. By comparing terms

s^- (rrV d°2)

and S
2
= S^ . ( 1Q3)

There is no loss of generality in assuming that r has full rank, i.e.,

rank equal to its minimum dimension. Under these conditions

cr r
T

)
#
= r

T#
r* (io4>

where T# = (fy)'V • This implies that

s
x
= O^D'V1

(105)

and S
2
= (r

T
T)"

1
r
T
* (106)

where the indicated inverse is known to exist.

Finally the third typical term of (12) is

||*<k)-h<r<i/k))||? (107)
W
3

where

w
3
= fl~

l

The procedure used to evaluate this term assumes that the measurement

errors are independent, i.e., ft is diagonal. While this is a realistic

assumption for most real problems there are means similar to those al-

ready used to handle cases where the observation errors at any time are

correlated with one another, i.e., R is not diagonal. The details will

not be discussed for lack of physical motivation.

This computation is carried out in the computer subroutine COST.

The auxiliary matrices B, S. and S~ are computed outside the subroutine.

T
The matrix decomposition routine which generates A such that AA P(l/0)

is called DECOMA.
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The Basic Minimization Procedure

Another procedure which is computed by a different method than that

used in the development is the minimization process (43). The computa-

tional procedure is a step-by-step solution of the linearized single-

stage problem. This single-stage problem is viewed as involving a se-

quence of observations. Each observation is combined in turn to produce

a new estimate of the state and a new covariance of that state. Figure

3 shows the details of the step-by-step procedure. At any point in the

procedure the best estimate, given the data processed, is x and the assoc-

iated covariance is p. This type of sequential processing is valid under

the assumption that the observation errors are mutually independent. In

the computer program this process is carried out with the observations

divided into blocks according to the time of the observation. The sub-

routine KALF1L processes each block in the manner indicated by Figure 3.

\ ENTER /

\ '- /
<

'

X » X

p —^p
o

Next observation

Next linear
relation

Next observation
error variance

H

PH —*-G(vector)

R+HG—*-B(scalar)
G/B— D(vector)

z-Hx —^E(scalar)
x+DE —^-x(vector)

T
P-GD —^P(matrix)

6
Figure 3. Flow graph of step-by-step minimization procedure.
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This routine is entered once for each block or once for each smoothing

stage carried.

This process yields the useful result that the vector x after j

blocks is composed of the sequences of state estimates x(l/j), Jf(2/j),

2
..., Jf(k/j). Similarly the matrix p is composed of k submatrices of the

form

P(l,l/j) P(l,2/j) . . P(l,k/j)

Pa P(2,l/j)

P(k,l/j) • • • P(k,k/j)

It is at this point that a lumping operation takes place. If it has been

decided that all of the observations up to and including the j stage

have negligible nonlinear noise, then a lumping operation is performed.

This consists of shifting all of the estimates x up and out and shifting

the p matrix up and to the left. This has the effect of eliminating any

reference to any state at time j or earlier and reducing the dimension of

the single-stage state x and the single-stage covariance p.

*(l/2)

X =
*(2/2)

*(3/2)

*(4/2)
m *J

AFTER
SHIFTING -^->X -

*(3/2)1

*(4/2)

SHIFTING
TIME INDEX

•>» X -
JC(l/0)

*(2/0)

P =

AFTE
SHIFTIfc*-

P(l,l/2) P(l,2/2) P(l,3/2) P(l,4/2)

P(2,l/2) P(2,2/2) P(2,3/2) P(2,4/2)

P(3,l/2) P(3,2/2) p(3,3/2) P(3,4/2)

P(4,l/2) P(4,2/2) P(4,3/2) P(4,4/2)

P(3,3/2) P(3, 4/2)1

P(4,3/2) P(4,4/2)

SHIFTIN
TIME IND 'P

P(l,l/0) P(l,2/0)

P(2,l/0) P(2,2/0)

Figure 4 Evolution of the estimate and covariance during the transition
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The process of shifting in the computer produces an automatic change in

indices. The process is shown as two step for an example where j s 2,

k: 4 in Figure 4. The subroutine SHIFT performs the details of shifting

the matrices as indicated above as well as several other matrices which

must be shifted.
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10. A Simple Example.

Unfortunately examples seem to fall In two mutually exclusive cate-

gories, enlightening or realistic. The following example is introduced

to illustrate the mechanical details of the algorithm. This example

also illustrates the process of abstracting the mathematical model from

the physical situation. Consider an active, drunken, tight rope walker.

He is put on a tight rope so that only one coordinate will be needed to

specify his position which will be designated r(k). A drunken person is

considered in order to introduce the concept that his position is a ran-

dom quantity.

It will be assumed from previous experience with drunken tight rope

walkers that his next position is different from his last position by

some completely random variable. The mean squared value of this dif-

ference is assumed to be known. Further it is assumed that his ramblings

to the right are balanced in the long run by those to the left, i.e., they

have zero mean. The mathematical model for this much of the physical

situation is given below.

x(k+l) - x(k) + ou(k) (108)

EO(k)] = (109)

t[-<k)-(j)] -
{§ £ IZ .

< 110 >

For concreteness Q is taken as 0.02.

The first expression is usually said to be the model of a dynamic

system excited by white noise. The second and third are quantitative de-

scriptions of the noise.

The next part of the situation that must be described is the process

by which data are obtained. Here the concept of a nonlinear measurement

is introduced. An angular measurement is made at some fixed distance
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from the tight rope, i.e., the observer turns his head through a certain

angle. For simplicity the observer is placed opposite the center of the

tight rope at a distance of one unit. It will be assumed that the ob-

server can sense the angular deflection of his head with a standard de-

viation of 0.1 radians. The mathematical model for the observer is given

below.

*(k) = tan
_1

(j*r(k)) + u(k) (111)

EO(k)] » (112)

«[»<k)»a)] - {* £ f* (us)

and R has been taken as 0.01.

Finally the a priori data must be specified. For this example the

use of an artificial a priori will be illustrated. The physical situation

is such that before taking any data there is essentially no information

available about position of the tight rope walker. This fact is model-

led by taking the a priori estimate as zero and assigning a very large

variance to this estimate, say 10,000.

The structure is

*(l/0) = (114)

i>(l/0) = 10,000 (115)

This completes the mathematical model of the physical process underlying

the observations. Assume that the first two observations are 0.7854 and

0.900 radians. Using these observations the computations required by

the filter are described in detail.

The method described in Section 5 for the single-stage case is

applied to this example for the first observation. The first estimate

of the state is the a priori estimate x. * 0. The partial derivative

1 12
of the measurement is evaluated to find H l/[l+(^

1
) ] 1 for the
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first iteration. Applying (44) yields

G
l - (1)-(10,000)/[(1).(10,000)°(1) + (,QI)] - 1.

Next Z is computed from (40)

,

Z
1 - .7854- tan"

X
(0) + (1)'(0) - 0.?®54„

From (43)

2
X. (not an exponent) - + (1)'(7854 - (1)°(0)) " 0«

In Table I the results of repeating this procedure thxee times are shown.

Also shown in the table is the cost associated with each estimate,

including the cost for the a priori. From a table for the chi square

variable the threshold values are found to be C, (0.05) ° 3„84 and
L

C (0.95)" 0.004. Both of these are for a single degree of freedom. C
M Li

has one degree of freedom since there are two constraints, the a priori

and the observation; less one adjustable quantity, the single component

of the state estimate. The C also has a single degree of freedom since
M

there is only one element in the state vector c From Table I it can be

2
seen that the cost associated with x-t might be considered a minimum cost,

but there has been a significant decrease in the cost so the process is

repeated. Considering the last iteration it may be said that l o is not

a significantly better estimate of the true state than 0.9767., This

terminates the first minimization process

.

It is interesting to note that the device of taking a large a priori

variance has led to the expected result that #(1/1) converges rapidly

to tan D?(l)] » 1.0. It may occur to the render that this is the hard

way to evaluate tan [<?(1)3, but the advantage of general applicability

of the method outweighs the advantages of considering special cases. In

any case, the machinery for handling a priori information mw.st be avail-

able in order to implement the lumping procedure.
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TABLE I

EXAMPLE OF SINGLE-STAGE MINIMIZATION PROCESS

A PRIORI ESTIMATE - 0.0

A PRIORI VARIANCE - 10,000

OBSERVATION - .7854

OBSERVATION
ERROR

VARIANCE
.01

ITERA- OLD NEW
TION ESTI- ESTI- COST

NUMBER MATE MATE

1
i

*1
>/" c

1 ,* i+1
*1 CC*

1
)

1 0.000 1.000 1.000 0.7854 0.7854 61.68

2 0.7854 0.6185 1.617 0.6042 0.9767 1.40

3 0.9767 0.5118 1.954 0.5121 1.0000 0.015

4 1.0000 .00001
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Next the bias and variance of the nonlinear noise are evaluated to

determine whether a lumping operation is indicated. The nonlinear noise

depends upon the variance of the new estimate and the second derivative

of the observation function evaluated at the estimate. The variance of

this estimate is computed from (54):

P - 10,000 - (10,000)
2
/(40,000 + 0.01) - 0,04.

Using this variance the lumping test criterion can be computed from

Appendix II. The bias due to the second order terms is 0.01 and the vari-

ance of the second order term is 0.0001. Comparing this with the variance

of natural noise (observation errors) it is noted that there is an order

of magnitude difference and a lumping operation would normally take place.

For this example the first stage will not be lumped so that the de-

tails of the two- stage minimization process may be illustrated. If

lumping had taken place the estimate would be projected forward to form

the a priori estimate for the next time frame. Since & = 1 for this

simple dynamic system the new a priori is just the old best estimate.

From (21) the variance of the a priori estimate is .06. To obtain the

estimate of the position of the tight rope walker at the second time

frame one proceeds exactly as above using the new a priori information.

In order to solve the two-stage minimization problem the problem

is reduced to a single-stage problem. The elements of the single-stage

state are the position at the first time and the position at the second

time. The relations described in Section 6 are used to generate a com-

plete single-stage problem having a two-dimensional state.

x
X,

(116)
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10000 10000

10000 10000.02

0.7854

0.9000

,01

.01

h(x)

h
1
(0P)

h
2

(x)

tan (jr.)

tan (r
2
)

(117)

(118)

(119)

(120)

The above is a new single-stage minimization problem and conceptually, it

is solved in exactly the same way that the previous (one dimensional) pro-

blem was solved, i.e., by repeated application of (43). As a practical

matter it is expedient to adjust the estimate separately for each ele-

ment in Z. This is possible since the errors in the observations are in-

dependent. This is true in general because the errors were assumed to be

white in the multi-stage problem.

Each iteration proceeds in two steps. First both elements of the

estimate are adjusted for the first element of z and then the resulting

adjusted estimates are adjusted for the second element of z. See Figure

3. The result of the first adjustment is already known and need not be

computed. The first element of this intermediate result is the best

estimate from the previous minimization process. The second element is

just the predicted estimate *(2/l) a *r (1/1) 1.0 from (83). The in-

termediate covariance is computed from (85), (86), and (87) and known

value of P(l/l).

1

inter.

1.0

1.0
(121)
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inter.

0.04 0.04

0.04 0.06

(122)

Starting from this intermediate result the adjustment to the esti-

1
mate for the second measurement is computed. H is now a row vector of

partials of the second observation function with respect to both elements

of the state vector: M - [_0. 0.50J . Note that the zero in H is a

general result of the way in which the problem is formulated. The measure-

ment function is formally a function of the whole state x although it is

clear from the construction of the single-stage form that each individual

element of the measurement function, h(v), is a function of the state of

the system at only one time. From (44) the adjustment coefficients, G ,

are obtained.

^1
.8

1.2
(123)

Applying (40) the synthetic observation is found to be

2
l

= .9 - tan"
1
(l) + (.5). (1) - .6146

and the adjusted estimates are

1.0917

1.1375
(124)

The cost for the intermediate estimate (121) and the above (124)

2
estimate, .*., are 1.313 and .552 respectively. Since these are a sum of

four squared residuals with two adjustable quantities the convergence —

test parameters are different. C (.05) - 5.99 and C (.05) - .103. Based
L N

on these parameters it may be inferred that the above estimate is signifi-

cantly better than the intermediate estimate. A second iteration will be

carried out.
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The minimization is accomplished in two steps. The first step is to

adjust the a priori vector for the first observation. The difference be-

tween this step and the single stage minimization is that the partial

2
derivatives are evaluated at x, given above in (124). The result of

this step is comparable to the previous intermediate estimate in (121)

and (122)

inter

.9951

.9951
(125)

inter.

.048 .048

.048 .068

(126)

The second step is to adjust this intermediate estimate for the second

observation. The partial derivative, H> is to be evaluated at jr, and not

x . . The result of this second adjustment is
inter J

1.0978

1 . 1405

(127)

The cost evaluated at this estimate is .539. The convergence tests in-

dicates that the last estimate is not significantly better than the

previous one. This minimization is said to have converged.

After it has been decided that the process has converged it is neces-

sary to evaluate the second-order terms in the expansion of the nonlinear

measurement function. For this purpose it is necessary to have the co-

variance of the last estimate. This covariance is automatically computed

by the method displayed in Figure 3.

.02096 .02096

.02096 .02966

(128)
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From Appendix II the expected value of the second order term, denoted

as the bias or simply b, is

.0048

.0065

and the variance about this expected value is

(129)

/?' -

,000023

.000042
(130)

Assume that only the first of the measurements has negligible second-

order terms. Then a lumping operation is indicated. This might be ac-

2
complished by noting the two-stage interpretation of X . and P

x
inter.

*(1/D

*(2/l)

(131)

and

inter.

P(l,l/1) P(l,2/1)

P(2,l/1) P(2,2/l)

(132)

The lower element of x. and the lower-right element of P. consti-
inter ° inter

tute the a priori information for the state at the second time frame.

It would be possible to consider this a priori information and the second

observation as a new problem.

In the computer program it is inconvenient to store all of the

intermediate results awaiting a decision on which stages are to be lumped,

An alternate method for carrying out the lumping operation will be de-

scribed. Assume as above that it has been decided to lump the first

stage. The next steps in the filter operation would normally be as fol-

lows. The third state is predicted using (83) and the covariance matrix

augmented accordingly using (84). These estimates are adjusted for the
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third observation. The main minimization procedure is begun. Recall

that the main minimization procedure is carried out in three steps, an

adjustment for each observation. After the first of these steps the the

intermediate result can be interpreted as

x
inter.

*(1/D

*(2/l)

*(3/l)

(133)

and

inter.

P(l,l/1) P(l,2/1) P(l,3/1)

P(2,l/1) P(2,2/l) P(2,3/l)

/>(3,1/1) P(3,2/l) P(3,3/l)

(134)

At this point the lumping operation is carried out by reducing the dimen-

sion of the single stage to two (see Figure 2) and storing the lower part

of x, (133) and the lower- right part of P, (134) in the area as-
Inter inter

signed to a priori information. The remaining two steps of the main mini-

mization procedure are then carried out. If the process has not converged

then the next minimization will only have two steps.

This completes the description of the operation of the filter for

this very simple example.
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11. Target Tracking.

It was decided to exercise the scheme on as realistic a problem as

could be found. The target data (which was fed into the filter) was gen-

erated by a sophisticated simulator. The target motion is the result of

maneuver commands generated by the user of the simulation scheme. The

simulator then computes the motion of the target, and simulates the radar

returns which that target would generate. The simulated radar is of the

search type having as available outputs range, range rate and three dir-

ection cosines at a rate of one frame every two seconds. The simulator

decides, taking into account the relative position of the target and radar,

whether a return is received. If a return is received, the simulator out-

puts a noisy version of the true range, range rate and direction cosines.

If no return is received the simulator sets a flag in the output data.

At long ranges the chances of getting a return are relatively small but as

the range decreases the radar gets returns more and more consistently.

Forming the Mathematical Model

It should be noted that this problem, as sketched above, does not fall

directly into the model which has been assumed in the development of the

technique. Among the parameters which have not been given in the descrip-

tion of the problem are $, T, B and even x (the state space). This is

typical of the way in which a problem is first encountered. What follows

will be a series of engineering approximations which yield the mathematical

model. This model forms the basis for the filter design.

First consider the stochastic dynamic model. The dynamic model may

be viewed as specifying two features of the problem. The first is a pre-

diction function. One asks: how would one predict some future state of

the system given perfect knowledge of the present state? This question in

62



fact helps to define the concept of state. The state of the system (for

filtering purposes) is that collection of current attributes of the system

which has a bearing on the future of the system. For the aircraft target

the assumption of straight and level flight leads to an assignment of pos-

ition and velocity as the states. The prediction function is based upon

the assumption of constant velocity. Thus the components of the state

vector are

X
1
= north position (miles)

Xj = north velocity (miles/sec)

jt_ = east position (miles)

X, east velocity (miles/sec)

X, = down position (miles)

jc, = down velocity (miles/sec)

and the prediction function is linear in the states and of the form

je(k + l)p. . = 4\r (k) . $ is the discrete time form of three independent

double integrators for a sample time of 2 seconds.

* =

1 2

1

1 2

1

1 2

1

The second feature which the model must provide is a measure of the

prediction errors, or equivalently I\ This implies that the prediction

errors are random variables made up of several normalized random variables.

T
The prediction error covariance is then Q = T T » For this problem

F was chosen under the assumption that in each direction there would be a

step-wise constant component of acceleration of random amplitude having
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zero mean and variance a . This implied that T takes the form

r= 2

*N

*N

a
E

°E

a,

The parameters o t o and a must be chosen to account for turbulence and

pilot maneuvers, which, from the filter's point of view, appear as random

accelerations.

CTN
= .02

a
E
= .02

aD
= .0032

Secondly consider the observation process. Having chosen the state

space x it is straightforward to write the functions h(x)

2 2 2 %
t^Of) = (x

l
+ #

3
+ #

5
) = range (miles)

(*jX
2
+ <3*4 + j^)

h
2
(y) = —i— rr— = range rate (miles/sec)

G^ + #
3
+ x

5
)

h
3
Cr) =

2 , 2 7 2,%
^1 + x3 x

5
)

a north direction cosine

h
4
C*) ,2. 2 , 2,^^1*3 *5'

s east direction cosine

h
5
(*) =

, 2 , 2 . ""O
^1 '3 *5*

= down direction cosine

'3 ~5'

The noise variance was approximated from considerations related to the

radar simulator.
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a =

1.5

4.0 x 10'
•6

1 .8 x 10'
•5

3, 1 x 10"5

1 .5 x 10
-4

Finally, the a priori estimate and its associated covariance must be

specified in order to complete the mathematical model. The fact that the

first radar return has been received places the target in a certain volume

in physical space. The position components of the a priori estimate were

taken as the centoid of that volume and the limits of the volume were taken

as three standard deviations on either side of the centroid. The a priori

velocity estimates were based on the assumption that the target was headed

directly toward the radar (in the negative north direction). The magnitude

of the velocity was taken as that of a Mach 2 target. The covariance of

each velocity estimate was assumed to be large compared to the square of

this velocity. The a priori estimate was taken as:

"80.0

-0.3

|

The a priori covariance was taken as:

*U/0) =
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P(l/0)

400

.09

400

.09

400

.09

This completes the process of abstracting the physical situation into

the form of the mathematical model.

It should be emphasized that the abstraction process must be carried

out for each physical system that generates a sequence of measurements. If

the model accurately describes the conditions under which the measurements

are made then the filter can be expected to yield estimates which are best

in some sense. Even an accurate model and an optimum filter do not assure

that the estimates will be adequate for any particular purpose.

The Algorithm Parameters

There are three parameters that define the iteration termination cri-

teria. They are the probability, a, that a minimum cost is greater than a

given threshold, C.; the level of statistical significance, P ; and the num-

ber of significant digits used by the computer.

The threshold, C , depends upon the number of stages carried (which
la

determines the number of degrees of freedom) as well as upon or. There are

five degrees of freedom in the cost for each stage carried since the system

dynamics (1) introduce six constraints and the observations (5) introduce

five constraints and there are but six adjustable parameters (the components

of the state vector) for each stage carried. An or of 0.05 was chosen in

order to have a small but finite number of cases where the minimum cost

was greater than C .
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The likelihood- ratio- test threshold, C„, also depends upon the num-

ber of stages carried. The number of degrees of freedom is six for each

stage carried since that is the number of components in the state vector.

A significance level of 0.95 was arbitrarily chosen. The thresholds C
id

and C are shown in Table II.
M

The filter was implemented on a CDC 1604 computer. This machine

carries about ten significant figures. Two successive iterations were

considered to be equivalent if all of the components of the estimate were

equal in the first nine significant figures.

The lumping criterion is based on a comparison of the covariance of

the observation errors and the covariance of the nonlinear noise intro-

duced by the linearization process. For concreteness , the nonlinear

noise was considered to be negligible when its covariance was less than

that of the observation errors by a factor of ten.

Target Tracking Results

Three target trajectories were filtered. The results were quite

similar. The target on which the largest number of observations were re-

ceived will be described in some detail. v

Figures 5 through 9 are a graphical display of the tilter operation.

Figures 5 and 6 show the true target trajectory projected on the NORTH-

EAST plane and the NORTH- DOWN plane. Superimposed on the true trajectory

are confidence areas generated by the filter. The boxes are used to pro-

vide a measure of the quality of the estimate. The size and shape ot the

box is computed from the covariance matrix of the estimate. If the es-

timation errors were Gaussian with a covariance equal to that computed

by the filter the box would have the following interpretation. There is

an ellipse, centered about the estimate which contains the true state
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TABLE II

ITERATION CONTROL PARAMETERS AS A FUNCTION OF THE NUMBER

OF STAGES CARRIED FOR cr -.05 AND 3 - .95

NUMBER OF C
L

C
M

STAGES CARRIED

1 11.07 1.64

2 18.31 5.23

3 25.00 9.39

4 31.41 13.85

5 37.65 18.49

6 43.77 23.02

7 49.55 27.86

8 55.76 32.85

9 61.33 37.80
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Fig. 5. Projection on NORTH-EAST

plane of true trajectory

with estimates.

Fig. 6. Projection on NORTH-DOWN

plane of true trajectory

with estimates.
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Fig. 7. Observation (pi) and estimation (+) errors in

NORTH coordinate.
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Fig. 8. Observation (jQ) and estimation (+) errors in

EAST coordinate.

D
D

D
CE a

TIME
|

+

Fig. 9. Observation (3) and estimation (+) errors in

DOWN coordinate.
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with probability of 0.63 and whose boundary is a curve of constant prob-

ability density. The vertices of the box are the extremities of the

major and minor axes of that ellipse.

Figures 7, 8, and 9 show the estimation errors and the observation

errors in each of the position coordinates. In addition the computed

standard deviation of the estimates is shown as a solid curve.

In order to illustrate the ability of the algorithm to converge to

a least-squares estimate the cost is given in Table III as a function of

the number of iterations and the number of observations received. The

first cost listed in each row was evaluated at an estimate X. which has

not been adjusted for the newly received observation. The estimate x.

for a (k+l)-stage minimization process is given by (89). The first iter-

2 1
ation yields x. by adjusting X. for the most recently received observation.

Only the partial derivatives associated with this new observation are

evaluated for this step. This step is comparable to the simple single-

stage linearization employed in [4] with such disappointing results. The

second row indicates the danger of stopping at this point. Subsequent

iterations reevaluate all of the partial derivatives at the previous

estimate. All of the observations are reprocessed with estimates start-

ing from the a priori estimate.

The cost after a lumping operation is only the sum of squares of

the residuals associated with stages still carried by the filter. The

lumping operation occurs in the middle of second iteration because this

is the first time that the intermediate results needed to form the new

a priori estimate of the remaining stage become available again after the

decision to lump has been made.

The time required to produce a least-squares estimate is tabulated

in Table IV. The time indicated does not include the time required for
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TABLE III

TYPICAL SEQUENCE OF COSTS AS A FUNCTION OF NUMBER

ITERATIONS AND NUMBER OF OBSERVATIONS PROCESSED

OBSERVATION C(JPl) STAGES

NUMBER i-1 i-2 i=3 i=4 CARRIED

1 367. 0.57 0.13 1

2 377.8 118.5 2.07 2.07 2

3 35.4 11.7 11.16 3

4 19.0 12.9 12.9 4

5 48.7 20.99 20.99 5

6 121.6 27.36 27.36 6

7 811.9 38.28 38.06 7

8 749.9 101.3 44.16 44.16 8

9 48.51 44.4 9.49* 9.49 2

10 12.27 10.98 1.51* 1.51 1

* A lumping operation oc<:urred.
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TABLE IV

TYPICAL COMPUTATIONAL TIME REQUIREMENTS FOR

THE CDC 1604 COMPUTER

OBSER-
VATION
NUMBER

COMPU-
TATION
TIME
(SEC)

CUMULATIVE
COMPUTATION

TIME
(SEC)

OBSERVATION
ARRIVAL
TIME

(SIMULATED)

1 0.817 0.817 0.0

2 2.633 36.633 34.00

3 2.617 48.617 46.00

4 3.683 52.300 48.00

5 5.633 65.633 60.00

6 7.633 73.266 62.00

7 10.45 83.716 66.00

8 26.083 109.800 78.00

9 14 . 900 114.700 80.00

10 2.100 116.800 82.00

11 1.367 118.167 86.00

22 1.467 134.050 110.00

34 1.300 148.417 130.00

63 1.483 196.017 196.00
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auxiliary computations performed for diagnostic purposes nor the time

required to read the data from the magnetic tape. It does include all

computations inherent in the filter operation such as evaluating the

cost and covariance of the nonlinear noise. The cumulative running time

has been adjusted to reflect the fact that the filter cannot begin to

compute a new estimate until the next observation is available.

Comparison between Table III and Table IV yields the obvious fact

that the time required to compute the estimate is highly dependent on

the number of stages carried. From an analysis of the computations in-

volved in Figure 3 it can be shown that the computations increase as the

square of the number of stages times the system order. The computation

time depends linearly on the number of observations.

The operation of the filter indicated for the tenth observation is

typical of all of the remaining stages in both number of iterations and

processing time required with the exception of the cases where the minimum

cost was greater than C . This happened 3 times out of 67 observations on

the longest run. In each case additional iterations involved only a single-

stage. Two or three extra iterations were needed to satisfy the termina-

tion criterion. The largest relative change in any component of the es-

timate decreased approximately two orders of magnitude after each itera-

tion. The average processing time for these three cases was about 1.9

seconds.
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12. Conclusions

An algorithm has been developed for the processing of a sequence of

noisy, nonlinear observations made on a dynamic system whose state is a

random function of time. The best estimate of the state of the system

at each observation time is defined to be the weighted- least- squares es-

timate.

This estimate is computed by solving a sequence of linear problems

which approximate the nonlinear problem more and more closely. A method

has been developed for automatically determining the number of iterations

required to compute the least- squares estimate by the above procedure.

The computation of each estimate is based on a least-squares fit on

only a finite sequence of past observations. A method has been developed

for determining the length of this sequence of past observations. The in-

formation contained in the older observations is carried forward in the

form of an a priori estimate.

The radar tracking problem is an example of the type of problem which

falls within the scope of this investigation. The algorithm was implemented

on a digital computer and used to process a sequence of observations pro-

vided by a realistic radar-target simulator. The estimation errors were

generally within the expected range, considering the randomness of the

dynamic system and the observation errors. The algorithm achieved the

least-squares estimate in three or four iterations. The length of the

sequence of observations on which the least-squares fit was based, rapidly

settled to only a single previous observation. The computational require-

ments appear excessive when compared with those associated with linear

observations. There are, however, no other generally applicable methods

when the observations are nonlinear and there is little prior information

about the state of the system.
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Appendix I

Discussion of singularity of P .

The covariance matrix P is assumed to be non-singular throughout
o

the development, however
;
there is a meaningful interpretation for the

case where P is singular. It will be shown that the filtering equations
o

are still valid in view of this interpretation and that in the one

instance where the inverse of P is required (in evaluating C) the use of

the pseudo inverse is appropriate.

This development begins by defining a new set of state variables, y,

so that the errors in the a priori estimates are uncorrelated.

y = Mx (l)

y Q
= Ux

q
(2)

-1 T
where U is a unitary matrix such that U = U and

UP U
T
= D (3)

o

where D is a diagonal matrix.

It will be shown now that D is the covariance of the a priori

estimates in the y states .

Cov iy
Q
) 5 E[ (y-y

o
) (y-yj ]

Cov {y ) - E[UCc-jc ) <x-x )

T
U
T
]

o o o

Cov (yQ
) - UE[ (JC-X

Q
) C*-*

o
)
T
]U
T

Cov (yQ
) = D (4)

If p is singular then D has at least one zero on the diagonal or,
o

to be more specific, the rank of p is equal to the rank of D which is
o

the number of non-zero elements along the diagonal of D. There is no

loss in generality in assuming that all of the non-zero elements of D are

in the upper part of the diagonal . The upper elements of y are
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conventional statistical estimates of the corresponding elements of the

true state y, having a variance given by the element in D. On the other

hand, the lower elements of y are precise or exact estimates of the

corresponding true state components and have no variance. When these

interpretations are reflected back to the x states the meaning of a

singular p becomes clear. A singular P implies that a certain number
o o

of linear combinations of the states are known exactly.

It will now be shown that the filtering equations, used repeatedly

in the minimization process, produce estimates consistent with these

interpretations. That is, the estimate of those linear combinations of

the states which were known exactly before adjustment for observed data

are not affected by the adjustment process. Further the covariance

matrix, p of the adjusted estimates reflects the fact that these linear

combinations are known exactly. This demonstration will be carried out

using the y state space. The filter equations are transformed to operate

on the y coordinates.

Consider first

substituting y for x in (5) yields

v
t
y l

- uT
i/ + PjFwpji* t W'

1 O ' #u
T
i/ ] » (6)

pre-multiplying both sides of (6) yields

y
l
" yo

+ WjFvPjF + ^l"
1

O - H\?y
Q

-\
, (7)

substituting U DU for P from (3)
o

y = yQ
+ DUtf

T
[/AJ

T
DtW

T
+ -ft]"

1
\z - HlPy ] , (8)

T
and finally making a change of variables f(

= H\J yields the filtering

equation,

y
l
= yo

"*" vFWK* + ^^l"
1 O " ^ ]

•
(9)
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in the y states. Since the lower elements of D are zero it is clear that

there is no change in these components of the adjusted estimate, y ,

after application of (9).

Now consider the covariance equation

*1 " P
o

' *fV*f + * ]
"'
^o

P. * U
T
DU - U

T
DU//[#U

T
DUtf

T
+ /?]"WdU

P
x
= U

T
[D - IX

T
[KDK

1
+ *]"JH>]U (10)

T
multiplying in front by U and in back by U

Uf^U
1
= D - EK

T
[KW + /?]"Vd (11)

Thus p reflects the fact that those linear combinations of x which

were known exactly are still known exactly.

In the expression for the cost consider only the first term,

\\x - Xi „ » where W. was assumed to be the inverse of P if it existed,
o 1"W

1
1 o

Substituting in the y states yields

T
Defining Q = UWU and substituting above yields

Define^ = (y. - y ) and partition ~y into two subvectors

2/
- H

where the lower subvector 'y
t
= from (9)
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Let Q be partitioned as

[3
;]

where D is the upper, non-zero, part of D. Thus sum of the residuals

can be expressed as

2 in- n 2
u -*iii w - K ii -i

D
u

The blank submatrices in Q above are immaterial since they will be

multiplied by y . = 0. Arbitrarily assigning zero submatrices to the

blanks implies that those residuals which are known to be zero are given

zero weight. This leads to

Q =
d-

1 1

U uw.u
T

T
and preraultiplying by U and postmultiplying by U yields

w^ uT

[!

ul

;]
u

but this is just an expression for the pseudo inverse of P .

o

Thus if the pseudo inverse of P is used in the definition of the

cost there will be no weighting of the residuals in certain linear

combinations of the states. On the other hand, if the x, is always

computed using (5) or one of its derivatives then these particular

residuals will always be zero.

During the discussion of the minimization algorithm the non-

singularity p was an important assumption. The discussion is valid for
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the case of p singular in the sense that a new minimization problem can

be defined in terms of y , taking y .= y . . The discussion then implies
o 1

that the change in the estimate of y has a positive component in the

direction of the negative gradient of C with respect y . when these

conclusions are reflected back to the x state space it can be seen that

the change in the estimate is related to the projection of the gradient

of C into that subspace of the state space about which there is some

uncertainty and for which an adjustment in the estimate is meaningful.

82



Appendix II

Consider a random variable

V m X
T
AX (1)

where A is a symmetric matrix and X is a Gaussian random variable

with mean zero and covariance P . It is desired to find an expression

for the first and second moment of the random variable u . The

development begins by making a change of variables

x - Blty (2)

T
where B is a decomposition of P such that P BB , U is a unitary matrix

T
as yet unspecified, such that UU = I and y is a random vector of zero

mean and identity covariance. The random variable V is expressed in

terms of y by substituting (2) in (1).

"
J/

T
U
T
B
T
ABU> (3)

Now let U be chosen so that

U
T
B
T
ABU - D (4)

where D is a diagonal matrix. Substituting (4) in (3) yields

v » /ty (5)

or v can be expressed in terms of the components of y

v m Ldvl (6)
£ i- l

To evaluate the first moment of v the order of summation and

expectation is interchanged.

E[u] = E[£ d yh
i

E[y] - ^ECi^]
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The components of y all have unit variance.

E|"u] » Z d (7)

1

Expressing (7) In matrix form yields

E[u] = trD (7')

2
The second moment is evaluated by expanding v in terms of the

components of y.

Eru
2
] = Era <v

2
><r *.ybl

i j
J J

Eru
2
] = E[T d

2
y\ + T d d y

2
y]-]

Er,
2
] , - d

2^*] +J/iV^J 1
(8)

The first term is evaluated by recalling that the fourth central

moment of a unit-variance Gaussian random variable is 3. Each

element of the second term can be factored due to the independence

of the components of y,

E[u
2
] = 3T d

2
+ V. d d E[y

2A E[y
2

']

i
1 y s

1 J 1 J

EP 2
] = 37 d

2
+ T. d.d,

i
i Wj i j

Eru
2
] = 2T d

2
+ (T d )

2

i 1

Substituting (7) above yields

E[u
2
] = 2£ d

2
+ (Eru])

2
(9)

i
X

This implies that the variance of u is

Varf"u] = 2T d
2

(10)
1

or in matrix form
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Var[u] = 2trrD
2
]. (10»)

The results, (7) and (10), are expressed in terms of the parameters

of the original problem. Substituting (4) in (7') yields

E\v~\ = tr[U
T
B
T
A B U ] .

Taking advantage of the fact that trfAB] = tr[BA] yields

E[u] = tr[A B U U
T
B
T
]

and cancelling Che unitary matrices yields

Eru] = tr[AP] . (11)

The development for the variance procedes along analogous lines.

Var[u] = 2trfU
T
B
T
A B U U

T
B
T
A B U ]

Var[u] = tr[A B B
T
A B B

T
]

Var[u] = tr[APAP] (12)

It is possible to consider the covariance of two random variables

as follows

T
V s x A x (1)

and a second random variable

V = x
T
A'x d')

The means of both of these random variables are known from (11) and an

expession will be developed for the expected value of the product. After

making the same change of variables as before, the expected value of the

product can be expressed as

E[u'u] = E[^
T
C y y

T
D y~\ (13)

where

This is equivalent to

C* U
T
B
T
A'B U (14)

E[u'u] == tr(C E[y y
T
L y y

T
]) (15)
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Examining only the elements of the matrix inside the expected value

T
operator, it is noted that the middle term, y D y, is a scalar.

J/

T
D V * L d.y

2
. (16)

i * x

Thus, the elements of the matrix are

rVj J
dk^ ] (17)

This expected value is zero for i^j and for i"j it can be written as

M s vb - 3d
i +£\

E[i
i
2 **& * 2d

i
+ L d

k
<18)

k k

Thus, the expected value is a diagonal matrix of the following form

E[W/
TD^T ] - 2D + (2 d )*I

k
K

Substituting in (15) yields

E[u u] - tr C[2D + (S 4)1 3

k
k

which can further be simplified to

E[U »3 - 2tr [cd3 + [L d 3trC (19)
k

K

Considering only the factors of the last term, it is noted that

Ed - e[w3 (21)

k
K

and that

tr C - tr[U
T
B A B u3

tr C tr[AP3

tr C - E[l> 3 (22)

Now the first term can be identified with the covariance from the general

expression
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Cov [r or ] - E[>y
2
] - EC^] Ef^] (23)

Cov[u'w] - 2tr[c D]

Cov[u'u] - 2tr[u
T
B
T
A'B U DJ

Cov[y'u] - 2tr[A'B U D uV]

Cov [Vv] - 2tr[A'B U U
T
B
T
A B U uV]

Cov[u'u] - 2tr[A'P A?] (24)

The useful results of this analysis are (11) and (24) since (12) is

only a special case of (24). Since these results will be used as a

guide even when the random variable x is not known to be Gaussian it is

worth reviewing just where the assumptions were used. The factor 2

which appears in (24) comes directly from Gaussian assumption (i.e., the

fourth central moment is 3 times the second central moment squared). A

second result of the Gaussian assumption is that the new random variables

y are statistically independent (used in (8) and (18)). The variables

y are uncorrelated (since D is diagonal) but only in the Gaussian case

does this imply independence. The effect of this assumption is diffi-

cult to evaluate. On the other hand (8) does not depend upon the

Gaussian assumption.
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Appendix III

Program Listings
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